环境微生物(EMS)的使用通过监测和分解污染物提供了高效,低成本和无害的环境污染补救措施。这取决于如何正确分段和确定EMS。为了增强透明,嘈杂且对比度较低的弱可见EM图像的分割,在本研究中提出了成对深度学习功能网络(PDLF-NET)。 PDLFS的使用使网络通过将每个图像的成对深度学习特征与基本模型Segnet的不同块相连,从而使网络更加关注前景(EMS)。利用shi和tomas描述符,我们在贴片上提取每个图像的深度特征,这些图像使用VGG-16模型以每个描述符为中心。然后,为了学习描述符之间的中间特征,基于Delaunay三角定理进行功能的配对以形成成对的深度学习特征。在该实验中,PDLF-NET可实现89.24%,63.20%,77.27%,35.15%,89.72%,91.44%和89.30%的出色分割结果,分别为IOU,DICE,DICE,VOE,灵敏度,精确性和特定性,精确性和特定性,精确性和特定性,精确性和特定性。
translated by 谷歌翻译
Over the past decade, tremendous progress has been made in Recommender Systems (RecSys) for well-known tasks such as next-item and next-basket prediction. On the other hand, the recently proposed next-period recommendation (NPR) task is not covered as much. Current works about NPR are mostly based around distinct problem formulations, methods, and proprietary datasets, making solutions difficult to reproduce. In this article, we aim to fill the gap in RecSys methods evaluation on the NPR task using publicly available datasets and (1) introduce the TTRS, a large-scale financial transactions dataset suitable for RecSys methods evaluation; (2) benchmark popular RecSys approaches on several datasets for the NPR task. When performing our analysis, we found a strong repetitive consumption pattern in several real-world datasets. With this setup, our results suggest that the repetitive nature of data is still hard to generalize for the evaluated RecSys methods, and novel item prediction performance is still questionable.
translated by 谷歌翻译
Nowadays, feature selection is frequently used in machine learning when there is a risk of performance degradation due to overfitting or when computational resources are limited. During the feature selection process, the subset of features that are most relevant and least redundant is chosen. In recent years, it has become clear that, in addition to relevance and redundancy, features' complementarity must be considered. Informally, if the features are weak predictors of the target variable separately and strong predictors when combined, then they are complementary. It is demonstrated in this paper that the synergistic effect of complementary features mutually amplifying each other in the construction of two-tier decision trees can be interfered with by another feature, resulting in a decrease in performance. It is demonstrated using cross-validation on both synthetic and real datasets, regression and classification, that removing or eliminating the interfering feature can improve performance by up to 24 times. It has also been discovered that the lesser the domain is learned, the greater the increase in performance. More formally, it is demonstrated that there is a statistically significant negative rank correlation between performance on the dataset prior to the elimination of the interfering feature and performance growth after the elimination of the interfering feature. It is concluded that this broadens the scope of feature selection methods for cases where data and computational resources are sufficient.
translated by 谷歌翻译
Determining and predicting reservoir formation properties for newly drilled wells represents a significant challenge. One of the variations of these properties evaluation is well-interval similarity. Many methodologies for similarity learning exist: from rule-based approaches to deep neural networks. Recently, articles adopted, e.g. recurrent neural networks to build a similarity model as we deal with sequential data. Such an approach suffers from short-term memory, as it pays more attention to the end of a sequence. Neural network with Transformer architecture instead cast their attention over all sequences to make a decision. To make them more efficient in terms of computational time, we introduce a limited attention mechanism similar to Informer and Performer architectures. We conduct experiments on open datasets with more than 20 wells making our experiments reliable and suitable for industrial usage. The best results were obtained with our adaptation of the Informer variant of Transformer with ROC AUC 0.982. It outperforms classical approaches with ROC AUC 0.824, Recurrent neural networks with ROC AUC 0.934 and straightforward usage of Transformers with ROC AUC 0.961.
translated by 谷歌翻译
Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks.
translated by 谷歌翻译
Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3Daware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Project page: https://snap-research.github.io/discoscene/
translated by 谷歌翻译
Imitation learning (IL) is a simple and powerful way to use high-quality human driving data, which can be collected at scale, to identify driving preferences and produce human-like behavior. However, policies based on imitation learning alone often fail to sufficiently account for safety and reliability concerns. In this paper, we show how imitation learning combined with reinforcement learning using simple rewards can substantially improve the safety and reliability of driving policies over those learned from imitation alone. In particular, we use a combination of imitation and reinforcement learning to train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision risk. To our knowledge, this is the first application of a combined imitation and reinforcement learning approach in autonomous driving that utilizes large amounts of real-world human driving data.
translated by 谷歌翻译
Cell-free multi-user multiple input multiple output networks are a promising alternative to classical cellular architectures, since they have the potential to provide uniform service quality and high resource utilisation over the entire coverage area of the network. To realise this potential, previous works have developed radio resource management mechanisms using various optimisation engines. In this work, we consider the problem of overall ergodic spectral efficiency maximisation in the context of uplink-downlink data power control in cell-free networks. To solve this problem in large networks, and to address convergence-time limitations, we apply scalable multi-objective Bayesian optimisation. Furthermore, we discuss how an intersection of multi-fidelity emulation and Bayesian optimisation can improve radio resource management in cell-free networks.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
We present HARP (HAnd Reconstruction and Personalization), a personalized hand avatar creation approach that takes a short monocular RGB video of a human hand as input and reconstructs a faithful hand avatar exhibiting a high-fidelity appearance and geometry. In contrast to the major trend of neural implicit representations, HARP models a hand with a mesh-based parametric hand model, a vertex displacement map, a normal map, and an albedo without any neural components. As validated by our experiments, the explicit nature of our representation enables a truly scalable, robust, and efficient approach to hand avatar creation. HARP is optimized via gradient descent from a short sequence captured by a hand-held mobile phone and can be directly used in AR/VR applications with real-time rendering capability. To enable this, we carefully design and implement a shadow-aware differentiable rendering scheme that is robust to high degree articulations and self-shadowing regularly present in hand motion sequences, as well as challenging lighting conditions. It also generalizes to unseen poses and novel viewpoints, producing photo-realistic renderings of hand animations performing highly-articulated motions. Furthermore, the learned HARP representation can be used for improving 3D hand pose estimation quality in challenging viewpoints. The key advantages of HARP are validated by the in-depth analyses on appearance reconstruction, novel-view and novel pose synthesis, and 3D hand pose refinement. It is an AR/VR-ready personalized hand representation that shows superior fidelity and scalability.
translated by 谷歌翻译